Discrete numerical simulation, quasistatic deformation and the origins of strain in granular materials
نویسنده
چکیده
Systematic numerical simulations of model dense granular materials in monotonous, quasistatic deformation reveal the existence of two different régimes. In the first one, the macroscopic strains stem from the deformation of contacts. The motion can be calculated by purely static means, without inertia, stress controlled or strain rate controlled simulations yield identical smooth rheological curves for a same sample. In the second régime, strains are essentially due to instabilities of the contact network, the approach to the limits of large samples and of small strain rates is considerably slower and the material is more sensitive to perturbations. These results are discussed and related to experiments : measurements of elastic moduli with very small strain increments, and slow deformation (creep) under constant stress.
منابع مشابه
The nature of quasistatic deformation in granular materials
Strain in granular materials in quasistatic conditions under varying stress originate in (I) contact deformation and (II) rearrangements of the contact network. Depending on sample history and applied load, either mechanism might dominate. One may thus define rheological regimes I and II accordingly. Their properties are presented and illustrated here with discrete numerical simulation results ...
متن کاملQuasistatic Rheology and the Origins of Strain
Features of rheological laws applied to solid-like granular materials are recalled and confronted to microscopic approaches via discrete numerical simulations. We give examples of model systems with very similar equilibrium stress transport properties – the much-studied force chains and force distribution – but qualitatively different strain responses to stress increments. Results on the stabil...
متن کاملThe critical-state yield stress (termination locus) of adhesive powders from a single numerical experiment
Dry granular materials in a split-bottom ring shear cell geometry show wide shear bands under slow, quasistatic, large deformation. This system is studied in the presence of contact adhesion, using the discrete element method (DEM). Several continuum fields like the density, the deformation gradient and the stress tensor are computed locally and are analyzed with the goal to formulate objective...
متن کاملNumerical Analysis of Severe Plastic Deformation by High Pressure Torsion
High-pressure torsion (HPT) is a metal processing method in which the sample is subjected to a very high plastic shear deformation. This process can produce exceptional levels of grain refinement, and provides a corresponding improvement in mechanical properties. To investigate the stress and strain distribution due to HPT process finite element simulation were conducted to investigate effectiv...
متن کاملA comparison between numerical and analytical modeling of ECAP
Recent developments in nanostructured products draw considerable attention to ultrafine grained materials. These materials are normally manufactured by different severe plastic deformation (SPD) methods. In the present study, analytical models and finite element method (FEM) are used to calculate strain imposed to a specimen that was deformed by equal channel angular pressing (ECAP). In additio...
متن کامل